If it's not what You are looking for type in the equation solver your own equation and let us solve it.
896=-16t^2+896
We move all terms to the left:
896-(-16t^2+896)=0
We get rid of parentheses
16t^2-896+896=0
We add all the numbers together, and all the variables
16t^2=0
a = 16; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·16·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{0}{32}=0$
| c/5=-4 | | -22=8x+8-2x | | 2(2y-7=22 | | 2x-3(x+10)+1=-1+2(x+7 | | -2x+8=-x | | 28=-f | | 2=2(g–5) | | -16k+k+2=17 | | (42-2x)(18-2x)x=0 | | 19=(1/2)h | | 4y+9=28 | | x=20-1x | | 2^t=4 | | 15+9=-4(9x-6) | | 36=-5v+3(v+8) | | 7(x+3)+4=13x-3 | | -10x+5-2x=-8x+13 | | 750*(0.922)^t=150 | | 5*2x+1=7x+11 | | -9=2x+x | | 5(4x+8)=-48+8 | | (7+x)(x+9)=x²-1 | | 6(y-91=24 | | 750(0.922)^t=150 | | 0.3x-0.4x+5=-5 | | 6*x+3=3*x-6 | | 7(v+10)=84 | | a÷6+8=9 | | -3(5x-1)=18 | | 7.00+1.50d=29.50 | | 3x−7=41 | | 6x=4x=30 |